
 Connector Semantics for Sketched Diagram Recognition

Isaac J. Freeman and Beryl Plimmer
Department of Computer Science

University of Auckland,
Private Bag 92019 Auckland, New Zealand,

isaac@freeman.org.nz and beryl@cs.auckland.ac.nz

Abstract

Comprehensive interpretation of hand-drawn diagrams is
a long-standing challenge. Connectors (arrows, edges and
lines) are important components of many types of
diagram. In this paper we discuss techniques for syntactic
and semantic recognition of connectors. Undirected
graphs, digraphs and organization charts are presented as
exemplars of three broad classes that encompass many
types of connected diagram. Generic techniques have
been incorporated into the recognition engine of InkKit,
an extensible sketch toolkit, thus reducing the
development costs for sketch tools.

Keywords: sketch recognition, sketched diagrams,
connector semantics.

1 Introduction

Pen input devices offer an intuitive and informal mode of
interaction with a computer which is a viable alternative
to the traditional keyboard and mouse. However, the
advantages of pen input come at a cost in processing
requirements: to fully exploit its potential software must
be able to recognize and interpret gestures made by the
user, and to convert them into symbolic representations
that capture the user's intent. The vast variety of shapes
that may be drawn constitutes a considerable challenge
for interpretation. Significant progress has been made
with text, and robust character recognition is a standard
feature in operating systems such as Microsoft's Tablet
PC Edition of Windows and Apple's Mac OS X.
Recognizing pen-based input only as text, however,
removes much of its potential expressiveness and
constrains it to a domain in which it is slower and more
unwieldy than a conventional keyboard. A user interface
that truly embraces the potential of pen input should be
able to recognize not only textual input in the form of
characters, but also graphical input in the form of
diagrams.

Reliable diagram recognition is a precursor to many of
the operations that can potentially be supported with
intelligent sketch tools; operations such as beautification,
translation into other data formats, animation and

execution. Progress has been reported in many of these
areas, but most projects have been specific to a particular
domain, with recognition tailored to the symbols and
syntax of one type of diagram. Tools that recognize
graphs (Arvo and Novins 2006), UML diagrams (Damm,
Hansen et al. 2000; Hammond and Davis 2002; Chen,
Grundy et al. 2003), architectural blueprints (Trinder
1999; Do and Gross 2001), or user interface designs
(Landay and Myers 1995; Igarashi 2003; Lin and Landay
2003; Plimmer and Apperley 2003; Coyette, Faulkner et
al. 2004) each represent a significant advance. There is a
good deal of commonality between them that can be
brought to bear on the problem of general diagram
recognition.

InkKit (Chung, Mirica et al. 2005) is a general
diagramming toolkit. It deals with those aspects of
diagram recognition common to many domains, and
provides an extensible architecture for modules
supporting domain-specific features. InkKit is intended to
reduce development costs for sketching tools, and to
provide an environment in which research can
conveniently be conducted into general aspects of
sketched diagram support. It includes a well-designed and
tested user interface and a powerful example-driven
recognition engine. Uniquely, InkKit's recognition engine
recognizes both characters and shapes within diagrams,
and deals with each appropriately.

The fundamental recognition engine employed by InkKit
is based on a similar engine developed for Freeform
(Plimmer and Apperley 2003), a user interface sketch
tool, and thus it was already well-suited to diagrams
depicting layout of user controls in a graphical user
interface. Through InkKit's development the set of
diagram domains it is capable of recognizing has
gradually extended. Some techniques developed for
particular domains can be usefully applied to others, and
we have aimed to find a suitable level of abstraction for
each aspect of recognition.

Many diagrams include shapes such as arcs, edges, and
arrows, which indicate connections between other shapes.
The frequency with which connectors appear suggested
that they should not be treated as domain-specific
features, but identified as part of InkKit's generic
recognition. While there are numerous examples of
sketch tools that recognize connectors within specific
types of diagram, this work is unique in describing a
general solution to connector recognition.

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at Eighth Australasian User Interface
Conference (AUIC2007), Ballarat, Victoria, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 64 Wayne Piekarski and Beryl
Plimmer, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

71

2 Background

The essential components of a useful sketch tool are:
hardware that supports pen input, a paper-like user
interface, and a powerful recognition engine. Most suited
to sketching are display surfaces that can capture high-
quality stylus input. Wacom™ tablets and Tablet PCs
meet these requirements, but offer limited display space.
Various techniques have been adopted to minimize the
problems of small displays, including zooming (Lin,
Newman et al. 2000) or a radar window (Damm, Hansen
et al. 2000). Larger surfaces such as E-whiteboards
increase the available display space, but currently lack the
input accuracy of tablets.

A digitally supported drawing space should be paper-like
to capture the advantages of unconstrained sketching
(Goel 1995). Yet it should also provide the advantages of
computational support, such as cut, copy, paste, and undo
functionality.

Providing intuitive editing support with a stylus is
challenging. Researchers have explored automatic
grouping (Elrod, Bruce et al. 1992) and the use of
functional gestures (Li, Hinckley et al. 2005), but both of
these techniques fail badly if recognition is not
completely accurate. Storyboards are used by many
sketch tools (Bailey, Konstan et al. 2001; Lin and Landay
2003; Plimmer and Apperley 2003) to visualize multiple
sketches and create relationships between them.

Most diagrams consist of both text and shapes. Reliable
text recognition is now commonly available as an
operating system service, but reliable, comprehensive
diagram recognition is an on-going challenge. Early
shape recognition algorithms required each shape to be
drawn in a single stroke (Rubine 1991), an unnatural
constraint to place on users. Other shape recognition
techniques include joining adjacent strokes before
recognition, applying fuzzy logic (Fonseca, Pimentel et
al. 2002) and template-matching and identifying
connectors first (Kara and Stahovich 2004). With
Freeform (Plimmer and Apperley 2003) we provided a
user interface for users to define spatial relationships
between two ink strokes. The user selected primary and
secondary shapes (rectangle, circle, etc.) and a spatial
relationship (contains. beside, etc.) from lists to define,
for example, a radio button as a small circle that may
have text beside it.

Two broad categories of sketch recognition engine can be
distinguished according to the stage in the sketching
process at which they begin to act on incoming data.
Eager recognition engines attempt to recognize shapes
immediately as they are drawn. This provides instant
feedback to the user, and has often been assumed to be a
necessary feature of diagram recognition, along with
beautification routines that immediately convert rough
sketch lines into smooth formal shapes. Lazy recognition
engines do not attempt to determine what the user has
drawn until after the sketch is completed. Studies in the
user interface domain (Bailey and Konstan 2003;
Plimmer and Apperley 2003) have found that this offers
advantages in real world applications. We believe that
these advantages carry over to other forms of rapid

prototyping, as informal sketched diagrams are most
suitable through most of the design process, and formal
output is only beneficial at the conclusion. No recognition
method is perfect, and while an eager engine draws

Figure 1: The InkKit Portfolio View, showing
multiple linked sketches typically displayed on a
large auxiliary display, while windows containing
individual diagrams would be opened on a device
with appropriate input capabilities, such as a
Tablet PC.

Figure 2: The InkKit recognition process. Sketches
are first processed by a generic recognition engine,
then passed to a plug-in that performs
interpretation specific to a particular type of
diagram.

72

attention to errors while the user is still trying to
complete the diagram, lazy engines avoid interruption by
delaying correction.

Other work on toolkits for sketch support includes that of
Hammond and Davis (2003) who have taken an approach
similar to Freeform: extending the number of
components that may be defined, but requiring the user
to write rules. Lank (2003), proposes a retargetable
framework which, like InkKit, automatically builds
recognition rules from users examples and recognizes
writing. However, Lank’s toolkit requires a significant
amount of code to be written for each new diagram type.

2.1 InkKit

InkKit runs on the Windows XP Tablet OS, and utilizes
the ability of modern graphics cards to span a desktop
across multiple display devices to increase the available
area. The user interface consists of windows for editing
sketches, and a portfolio window (Figure 1) which shows
the all sketches currently in use. While the interface can
be used comfortably on a single screen, it has been
designed to allow for collaborative development, in
which the portfolio window would typically be presented
on a large display, and sketches edited on a Tablet PC.

The sketch windows support two modes: ink mode with
the standard drawing tools and features commonly found
in paint applications, and an edit mode in which they can
move and re-size recognized shapes, and correct any
components that have been incorrectly identified.

InkKit uses lazy recognition: no attempt is made to
interpret a sketch until the user clicks on the ‘Recognize’
button. We believe that the advantages of eager
recognition are minimal for most types of diagrams, and
that it often interrupts free sketching. This gives a
distinct advantage at recognition time: by choosing when
to perform recognition the user implicitly indicates that
the sketch is in a state suitable for recognition - it is
unlikely that any meaningful symbol will be half-drawn.

A further constraint that improves recognition is
provided by user selection of the domain for each sketch.
While a portfolio may collect many types of sketches,
each sketch belongs to a single domain. At recognition
time the set of diagram components to match with shapes
is limited to those found in the relevant domain.

Shape recognition in InkKit follows four cleanly
separated phases (Figure 2). In the first phase, a divider
routine separates text from other diagram shapes. Text is
passed to the OS for recognition. The second phase first
joins multi-stroke shapes (such as a rectangle drawn as
four lines) and then applies Rubine's (1991) single stroke
algorithm to recognize domain-independent geometric
shapes such as rectangles, triangles, circles and lines. In
the third phase, groups of basic shapes are compared with
user-drawn examples of domain components. Shapes are
matched by pattern-matching visual features, using a
variant of Rubine's algorithm. The final phase determines
the structure of the diagram from the spatial relationships
between recognized components. Component classes may
be tagged with properties describing how they interact

with other components. We aim to keep the set of
possible properties to a minimum, and in fact the initial
version of InkKit had only two, indicating whether a
component might contain other components (parent), or
be contained within other components (child). Later in
this paper we will discuss the addition of two further
properties.

This architecture minimizes the impact of recognition on
the user. They do not need to define explicit rules to train
InkKit, only to provide two or three examples of each
component to be recognized (Figure 3). In fact, we have
found that it is not crucial that the examples be provided

Figure 3: User interface for defining component
types. This particular example is the organization
chart domain.

Figure 4: Generic processing of connector objects by
a domain plug-in.

Figure 5: An undirected graph sketched in InkKit

73

by the same user as the sketch - success of recognition
is not strongly affected.

The clean separation of recognition phases allows us to
progressively improve the recognition engine,
experimenting with alternative approaches and
evaluating their effectiveness. Informal evaluations
with five novice users achieved approximately 85%
accuracy recognizing simple user interface diagrams.

Domain-specific aspects of recognition are supported
via a plug-in architecture. A domain is specified by a
code module defining its specific diagram components
and a set of example components. Further modules may
then be written to support output in different formats.
For example, currently user interface diagrams can be
output as Java source code or as HTML. Graphs and
organization charts can be output as either a text
description, a bitmap graphic, or constructed as
diagrams in Microsoft Word using Microsoft's .Net
libraries for Office.

We have successfully developed modules for user
interface sketches (Chung, Mirica et al. 2005) which
replicate the functionality of Freeform, and add further
features such as converting sketches into HTML form
code and Java source. Appropriate behaviors such as
buttons leading to other forms, and dropdown lists
being filled with words are specified by creating links
between sketches in the InkKit portfolio view. The
result is a simple rapid-prototyping tool for software
applications that can generate user interface code from
a sketch.

3 Connectors

For many types of diagram, recognizing discrete
components of the diagram is not sufficient to correctly
interpret meaning. For example, little of value is
achieved if a graph is recognized only as a list of edges
and nodes. The edges signify relationships between the
nodes, and these relationships are crucial to correctly
interpreting the graph. There is a large class of
diagrams in which connectors represent relationships,
but the precise nature of the relationship differs
between diagram types. Thus, in the original InkKit
model, connecting shapes were not accounted for in the
main recognition engine, but left up to authors of
individual plug-ins. In this paper, we identify broad
classes of connector generic enough to be integrated
into a sketch recognition engine.

The meaning of a connector depends on a combination
of attributes of its own shape and of the overall sketch
layout. The number of shapes connected, their position,
or an inherent directionality of the connector may be
significant to different degrees in different types of
diagram. To explore these ideas we selected three
exemplars to implement as InkKit modules: simple
undirected graphs, directed graphs, and organization
charts. Figure 4 summarizes the approach taken in all
three modules: a set of spatially positioned node and
connector objects is converted into a set of node objects
tagged with their logical relationships to other objects,
based on the connector model relevant to the domain.

Figure 6: An undirected graph that has been
decomposed by the InkKit recognition engine into its
node and edge components

Graph Contents
Node "three"
has an edge to node "one"
has an edge to node "two"
has an edge to node "four"

Node "one"
has an edge to node "three"
has an edge to node "two"

Node "four"
has an edge to node "three"

Node "two"
has an edge to node "three"
has an edge to node "one"

Figure 7: Text output for an undirected graph

Figure 8: Formal graphical output of an undirected
graph from InkKit

74

3.1 Undirected Graphs

Undirected graphs (Figure 5) provide a base case for
connected diagrams. Their edges have no direction,
relationships can be determined completely by detecting
overlaps - if the end points of an edge fall within two
different node shapes, those nodes are connected.

InkKit's recognition engine separates the graph into its
edge and node components (Figure 6), and records
overlaps. The set of recognized components is passed to
the graph module, which iterates over the edges,
attaching to each node a list of other nodes to which it is
connected. The nodes are then deleted from the logical
description of the graph. InkKit output plug-ins produce
a simple text description (Figure 7) of the graph, or
render it as a formal diagram Figure 8) in a variety of
graphics formats. The graphical output is not a simple
beautification of the original sketch, but is constructed
from the same logical description of the graph as the text
output. Further plug-ins to InkKit could be developed to
convert this logical description into any other format
required.

3.2 Directed Graphs

In a directed graph (Figure 9), incoming arcs are
distinguished from outgoing arcs with arrows. The
domain module expands on the undirected graph
algorithm by identifying the directions of connections.

While processing connectors, the directed graph module
distinguishes between the longest stroke of the
connector, which is assumed to be the "shaft" of the
arrow and any other shorter strokes which are assumed to
make up the head. The direction of the arrow is
determined according to which end of the longest stroke
the shorter strokes are closer to. This approach does not
require the user to draw arrows in any particular style,
but does have the disadvantage that the shape of the
arrowhead does not affect the direction interpreted by the
plug-in: a triangle at the top of a vertical line will be
assumed to mean that the arrow is pointing upwards,
even if the triangle points down. More sophisticated
recognition techniques are possible with further
development. The directed graph tags nodes with
separate lists of incoming and outgoing connections and
as before, the connectors are deleted from the logical
description of the graph. Figures 10 and 11 show results
from text and graphical output modules.

3.3 Organization Charts

Organization charts exemplify a third type of connected
diagram, in which the direction of connectors is a
property of the sketch itself. Nodes in an organization
chart represent people in a hierarchical organization
(Figure 12). Superiors are positioned higher in the sketch
than their subordinates, so all connectors are directed
downwards, and arrowheads are not required.

Organization charts may also include one-to-many
relationships, in which a superior has multiple
subordinates. They often form tree structures, and the
techniques required to recognize them are applicable to

Figure 9: A directed graph sketched in InkKit

Directed Graph Contents
Node "three"
has an incoming arc from node "two"
has an incoming arc from node "five"
has an outgoing arc to node "five"

Node "one"
has an incoming arc from node "two"

Node "two"
has an incoming arc from node "four"
has an outgoing arc to node "three"
has an outgoing arc to node "one"

Node "five"
has an incoming arc from node "three"
has an outgoing arc to node "three"

Node "four"

has an outgoing arc to node "two"

Figure 10: Text output for a directed graph

Figure 11: Formal output of a directed graph from
InkKit

75

other tree diagrams. However, organization charts
encompass a broader class than trees, as a subordinate
may sometimes have more than one superior. So
connectors must be able to depict many-to-many
relationships.

 A person will typically be drawn as a box containing
text, although any other shape may be substituted if the
user provides suitable example sketches. Rather than
require the user to create examples for every possible
type of connection, we allow a relationship between
people to be represented by a chain of one or more
connectors. For example, the relationship between a
superior and two subordinates may be made up of a
straight vertical line connected to an inverted-U shape.
InkKit can recognize multiple versions of the same
component, so that direct straight-line connectors and
multiple connectors may be considered to be two
different examples of a connector component. In fact,
the constraint of working with a specific domain allows
InkKit to interpret as a connector any shape that is not a
person, which allows the user a great deal of freedom.
As before, InkKit's main engine recognizes an
unordered list of shapes, both Persons and Connectors
(Figure 13).

Each connector is processed by the domain module in a
manner similar to that for directed graphs: persons at its
top end have persons from the bottom end added to
their inferiors list, and vice versa. As connectors may
be chained, it is necessary to detect for each connector
not just the persons at its superior and inferior ends, but
also any other connectors that may lead on to further
persons. To handle this requirement, connectors are
tagged with superior and inferior lists of the same type
as those for person objects, and processed as persons
until all their connections have been assigned to actual
person shapes. Processing proceeds through all
connectors in a single pass, and the result is a list
containing only persons annotated with their
relationships, which is passed to domain modules for
output (Figures 14 and 15). This is the most complex of
the connector algorithms we have developed, and
pseudocode is provided in figure 16.

4 Generalizing connector recognition

From these three modules we identified the core
syntactic and semantic requirements for intelligently
recognizing connectors, and identified common
functionality to integrate into the final phase of the core
recognition engine. This code identifies the components
at the endpoints of a connector and tags each
component with the connector information. With this
information the domain specific modules can trace the
paths between components and apply path information
as appropriate. By providing generic connector
information the amount and complexity of code
required in interpreter modules for connected diagrams
is reduced.

Once the generic connector code was integrated into
InkKit we re-engineered the modules. The graph,
digraph and organization chart originally required 337,

Figure 12: An organization chart sketched in InkKit

Figure 13: An organisation chart that has been
decomposed by the InkKit recognition engine into its
person and connector components

Organization Chart Contents

Person "boss"
is a superior of "Lackey"
is a superior of "Minion"
has no superiors

Person "Lackey"
has no inferiors
is an inferior of "boss"

Person "Minion"
is a superior of "Worm"
is a superior of "Molecule"
is an inferior of "boss"

Person "Worm"
has no inferiors
is an inferior of "Minion"

Person "Molecule"
has no inferiors
is an inferior of "Minion"

Person "Nobody"
has no inferiors

has no superiors

Figure 14: Text output for an organization chart
76

598 and 443 lines of code respectively. These have been
reduced to 320, 439 and 373 lines respectively, with a
corresponding reduction in complexity and no effect on
reliability. A corresponding reduction in development
effort should apply to any module that exploits InkKit's
new generic connector routines.

5 Discussion and further work

In this paper we have described the requirements for
three different types of connectors; simple point-to-point
connections (graphs), and two types of directional
connectors, those governed by the connector syntax
(arrows) and spatially inferred relationships (trees). The
exemplars also demonstrate the full range of cardinality
requirements, one-to-one, one-to-many and many-to-
many. Developing these exemplars allowed us to identify
the generic requirements for connectors in diagrams and
to integrate this code into the InkKit diagram toolkit.

The simplicity of these connector algorithms belies the
complexity of the relationships that they are capable of
recognizing. Assuming InkKit correctly separates
components, the connector algorithms can reliably be
applied to almost all connected diagram types.

There are limitations on the recognition of direction of
arrows. Our simplistic approach is to recognize the longer
stroke as the shaft and shorter strokes as an arrowhead
that is assumed to be pointing towards the end to which it
is closer. This has been sufficient for us to explore the
semantics of arrow directed connectors, however many
diagrams use different techniques for indicating
directionality, and InkKit might usefully be extended to
incorporate them.

UML Class diagrams would serve as a useful exemplar

for further development of connector recognition. They
require that connectors be labeled to represent
associations and constraints, and that they incorporate
annotations at each end to represent cardinality. In
addition, UML Class diagrams may incorporate several
types of connector in the same diagram with different
behaviors for each: inheritance relationships must be
interpreted differently from composition relationships.
InkKit is well suited to recognizing these different
connector types as separate components, and processing
each differently, but implementing all of these would be
useful to further elucidate the general and specific
features required for diagram and connector recognition.

InkKit's modular architecture and separation of generic
recognition from domain-specific interpretation
significantly reduces the effort required to develop new

Figure 15: Output from an organization chart, built as a
diagram in Microsoft Word

for each shape in shapesList returned by recognition engine

 if shape is a Connector

 for each connectedShape in shape's list of connected shapes
 if connectedShape is lower on page than shape
 shape.AddSuperior(connectedShape);
 else
 shape.AddInferior(connectedShape);

 for each superiorShape in shape's list of superiors
 if superiorShape is a Connector
 for each inferiorShape in shape's list of inferiors
 superiorShape.AddInferior(inferiorShape);
 else if superiorShape is a Person
 for each inferiorShape in shape's list of inferiors
 if inferiorShape is a Person
 superiorShape.AddInferior(inferiorShape);

 for each inferiorShape in shape's list of superiors
 if inferiorShape is a Connector
 for each superiorShape in shape's list of superiors
 inferiorShape.AddSuperior(superiorShape);
 else if inferiorShape is a Person
 for each superiorShape in shape's list of superiors
 if superiorShape is a Person
 inferiorShape.AddSuperior(superiorShape);

 remove shape from shapesList

Figure 16: Pseudocode for processing InkKit recognition results for an organisation chart.

77

sketch recognition tools, and opens many avenues for
further development. The integration of basic
understanding of connections into the core recognition
further reduces the development effort. The domain
specific techniques applied to undirected graphs, directed
graphs and organization charts in this paper are applicable
to a very wide range of diagram types, and the three
discussed in this paper require only minor modifications
to support recognition of genealogy charts, Feynman
diagrams, Entity-Relationship diagrams, inheritance trees
and others from many fields.

InkKit also has potential for development of output
methods more specific to each type of diagram. Graph
plug-ins could be augmented with algorithms to
determine whether they are connected, or any of a variety
other common algorithms from graph theory. Since
InkKit produces output from logical representations, there
is also potential for adding algorithms to "untangle"
complicated sketches.

6 References

Arvo, J. and K. Novins (2006). Appearance-preserving
manipulation of hand-drawn graphs. Graphite,
ACM,61-68

Bailey, B. P. and J. A. Konstan (2003). Are Informal
Tools Better? Comparing DEMAIS, Pencil and
Paper, and Authorware for Early Multimedia
Design. CHI 2003, Ft Lauderdale, ACM,313-
320

Bailey, B. P., J. A. Konstan and J. V. Carlis (2001).
DEMAIS: Designing Multimedia Applications
with Interactive Storyboards. ACM
Multimedia,pp. 241-250

Chen, Q., J. Grundy and J. Hosking (2003). An E-
whiteboard application to support early design-
stage sketching of UML diagrams. Human
Centric Computer Languages and Environments,
Auckland, NZ, IEEE,219-226

Chung, R., P. Mirica and B. Plimmer (2005). InkKit: A
Generic Design Tool for the Tablet PC. CHINZ
05, Auckland, ACM,29-30

Coyette, A., S. Faulkner, M. Kolp, Q. Limbourg and J.
Vanderdonckt (2004). SketchiXML: towards a
multi-agent design tool for sketching user
interfaces based on USIXML. Proceedings of
the 3rd annual conference on Task models and
diagrams, Prague, Czech Republic, ACM
Press,75-82

Damm, C. H., K. M. Hansen and M. Thomsen (2000).
Tool support for cooperative object-oriented
design: Gesture based modelling on and
electronic whiteboard. Chi 2000, ACM,518-525

Do, E. Y. L. and M. Gross (2001). "Thinking with
Diagrams in Architectural Design." Artificial
Intelligence Review(15): 135-149.

Elrod, S., R. Bruce, R. Gold, D. Goldberg, F. Halasz, et
al. (1992). "Liveboard: A large interactive
display supporting group meetings, presentations
and remote collaboration." CHI '92: 599-607.

Fonseca, M. J., C. e. Pimentel and J. A. Jorge (2002).
CALI: An Online Scribble Recognizer for
Calligraphic Interfaces. AAAI Spring
symposium on Sketch Understanding, IEEE,51-
58

Goel, V. (1995). Sketches of thought. Cambridge,
Massachusetts, The MIT Press.

Hammond, T. and R. Davis (2002). Tahuti: A
Geometrical Sketch Recognition System for
UML Class Diagrams. 2002 AAAI Spring
Symposium on Sketch Understanding

Hammond, T. and R. Davis (2003). LADDER: A
Language to Describe Drawing, Display, and
Editing in Sketch Recognition. IJCAI,12-19

Igarashi, T. (2003). Freeform User Interfaces for
Graphical Computing. 3rd International
Symposium on Smart Graphics, Heidelberg,
Germany, Springer,39-48

Kara, L. B. and T. F. Stahovich (2004). Hierarchical
Parsing and Recognition of HandSketched
Diagrams. UIST '04, Santa Fe, New Mexico,
ACM Press,13 - 22

Landay, J. and B. Myers (1995). Interactive sketching for
the early stages of user interface design. Chi '95
Mosaic of Creativity, ACM,43-50

Lank, E. H. (2003). A Retargetable Framework for
Interactive Diagram Recognition. ICDAR,
IEEE,185- 189

Li, Y., K. Hinckley, Z. Guan and J. A. Landay (2005).
Experimental analysis of mode switching
techniques in pen-based user interfaces. SigChi
2005, Portland, Oregon, USA ACM,461-470

Lin, J. and J. A. Landay (2003). Damask: A Tool for
Early-Stage Design and Prototyping of Cross-
Device User Interfaces. CHI 2003 workshop on
HCI Patterns: Concepts and Tools, Fort
Lauderdale, Florida

Lin, J., M. W. Newman, J. I. Hong and J. A. Landay
(2000). Denim: Finding a tighter fit between
tools and practice for web design. Chi 2000,
ACM,510-517

Plimmer, B. E. and M. Apperley (2003). Software for
Students to Sketch Interface Designs. Interact,
Zurich,73-80

Rubine, D. (1991). Specifying gestures by example.
Proceedings of Siggraph '91, ACM,329-337

Trinder, M. (1999). The computer's role in sketch design:
A transparent sketching medium,. Computers
and Building, CAAD futures 99, Atlanta,227-
244

78

